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ABSTRACT 

In recent years, pseudospectral (PS) methods have been successfully applied to solve a rich number of 
trajectory optimization problems arising in aerospace application.  Motivated by the success of this approach, 
we consider the problem of generating minimum-time trajectories for unmanned ground vehicles.  Shapes of 
arbitrary number, size and configuration are modelled in the form of path constraints in the resulting optimal 
control problem formulation.  PS methods are used to solve the constrained, nonlinear optimal control 
problem.  Solutions are obtained within a few seconds even under a MATLAB environment running on legacy 
computer hardware.  A complete problem formulation is developed including a derivation of the necessary 
conditions for optimality.  The trajectories are mathematical extremals as they satisfy all the optimality 
conditions.  What is noteworthy about our approach is that the difficulties associated in solving the 
Hamiltonian equations are completely circumvented by an application of the Covector Mapping Theorem.  
Solved examples are provide to illustrate the tools and techniques. 

1.0 INTRODUCTION 

Trajectory planning occurs within the guidance system of every autonomous or semi-autonomous vehicle, 
whether it is the $300 Roomba® or the $300M New Horizons spacecraft.  Trajectory planning allows the 
vehicle to travel from one location to another safely, within the limits of its electrical and mechanical 
capabilities, and in some situations, in an optimal manner with respect to use of fuel, expenditure of time, or 
distance travelled.  The development of autonomous trajectory planning technologies has been painstakingly 
slow; the variety of tasks accomplished by every five-year-old human cannot, at this point in time, be 
replicated by a multi-million dollar robot.  The advantages, however, to accomplishing human-like tasking 
with a robot are immeasurable and for that reason continue to be a goal of researchers everywhere. 

1.1 Motivation 
A broad class of problems are emerging that implore the ability to remove the human from the control loop.  
The rewards of robotic systems are increased production, reliability, safety, and capability.  Spacecraft 
assembly and repair, space station replenishment, and certain facets of planetary exploration were viewed 
solely as human missions during the Apollo and early Space Shuttle periods.  Ever improving technologies 
and capabilities and cost and risk reduction have been the driving forces in reshaping these paradigms; now, 
systems are either being developed or have already been fielded to accomplish these tasks unmanned.  The 
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Mars rovers Spirit and Opportunity are shining examples of the utilization of robotic technologies to aid 
human exploration, accomplishing tasks that could not be achieved otherwise.  The applications of trajectory 
planning are not limited to systems outside the Earth’s atmosphere.  Military applications of unmanned and 
autonomous vehicles have drawn considerable interest and recognition in recent years.  Most notable is the 
Unmanned Aerial Vehicle (UAV), but considerable advances are making the incorporation of unmanned 
ground (UGV) and sea surface vehicles possible.  Meanwhile, new classes of UAVs are under development 
that are carried by soldiers on the ground, deployed only when operationally needed, and implemented 
without the overhead of the larger current systems.  These systems remove humans from jobs that would be 
otherwise extremely dangerous.  Moving away from the public sector, the private arena is the ultimate stage 
for technological utility.  While the future possibilities are truly endless, robotic technologies are already 
improving consumer lives by eliminating such tedious tasks as vacuuming and parallel parking. 

1.2 Background 
The various applications of trajectory planning led to the evolution of differing techniques to solve their 
problems.  Aeronautical and space applications drove the development of nonlinear optimal control 
techniques and continue to do so [1-6].  In these situations, global problem knowledge is assumed, vehicle 
motion is precisely understood, few physical constraints obstruct the vehicular motion, and trajectory 
optimization is key to design and mission success.  Robotics applications propelled a differing solution, but it 
was a solution better adapted to fit the inherent situational complexities including: limited problem 
knowledge, noisy sensors, uncertain dynamical characteristics, intricate obstacle-rich environments, limited 
computational power, and the necessity to generate feasible solutions.   Despite the general similarity between 
problems, these two fields of application experienced little cross-pollinization.  Aerospace applications 
desired optimality and robotics applications desired simplicity and an ability to handle uncertainty.   

Many techniques fall within the realm of robotics-based trajectory planning [7-8].  Potential functions were 
first developed over thirty years ago [9], and though they can be simplistic, they are still used in many 
functions today [10-11].  In general, this approach can be used successfully in the presence of uncertainty but 
it suffers from occurrences of local minima, a lack of trajectory optimality, and difficulty in accommodating 
complex vehicle constraints [12].  More recent developments place heavy emphasis on sampling-based 
planning techniques.  Notably, sampling methods include Probabilistic Road Maps (PRM), Rapidly-Exploring 
Random Trees (RRT), and Expansive Space Trees (EST) to name a few [8, 13-15].  On the whole, these 
methods use a probabilistic means of connecting the initial configuration to the final configuration, enabling 
an improved capacity to handle uncertainty, a relative blindness to environmental complexity, and a capability 
to generate feasible solutions with minimal computational burden.  Complexity increases with the 
incorporation of planning techniques to satisfy dynamic constraints and improve solution optimality; however, 
solution optimality is never guaranteed [15].   

Nonlinear optimal control methods offer significant advantages to other approaches, namely the inherent 
satisfaction of vehicle and problem constraints and the intrinsic extremal nature of solutions.  Generally, two 
distinct methods exist for solving the nonlinear optimal control problems [16-17], direct and indirect.  Indirect 
methods make use of Pontryagin’s maximum principle and create a two-point boundary value problem.  
Direct methods transfer the problem into a nonlinear programming problem by discretizing the trajectory and 
this problem can be solved by any one of a number of nonlinear optimization solvers.  Typically direct 
methods are considered more numerically advantageous that indirect methods, but despite their differences, 
they all share the same concerns including: solution convergence, computational complexity, and the need for 
a good initial guess.  Advances in computing power and improvement in optimization algorithms are changing 
that paradigm and research is showing the applicability of optimal control techniques in guidance and control 
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[18-21].  Whereas optimization methods traditionally created a solution in minutes to hours, solutions can now 
be found within seconds or less, and the improvements in computational speed increase their ability to handle 
problem uncertainty.  Aerospace applications made use of optimal control solutions because the problems 
typically permitted the trajectories to be generated offline; now the improvements in optimal control methods 
present a strong argument for their application in online planners and with robotics problems.   

2.0 SOLUTION APPROACH 

Given the progress made in applying optimal control methods to online aerospace applications [18-19] and 
being aware of the ability to eliminate the associated computational burden [20, 22], this paper focuses on the 
application of these techniques to a new breed of problems, sharing attributes with both aerospace and 
robotics applications.  This problem is that of the unmanned vehicle, characterized by a lack of global 
knowledge, complex obstacle-rich environments, and a need for feasible solutions in the face of uncertainty.  
On the other hand, these systems typically incorporate sophisticated sensors and ample computational power.   

The research presented here evaluates and validates the concept of trajectory planning for unmanned vehicles 
with optimal control methods.  Being a feasibility study, robustness is not proven, and while the concerns of 
uncertainty are currently being evaluated, those efforts are not discussed here.  Instead, the primary thrust of 
this work is the optimization of kinematic trajectories within varying, complex environments.  The 
optimization tool used during this exercise was DIDO©, a software package based on pseudospectral methods 
[1-6] that runs within the MATLAB environment.  

3.0 THE OPTIMAL CONTROL PROBLEM 

One of the many advantages to utilizing optimal control methods is the relative ease with which a multitude of 
problems is formulated.  Any kinematic, dynamic, or path constraint or optimality criteria that is appropriately 
expressed in a mathematical manner can be rapidly incorporated into the problem formulation.  This inherent 
portability and flexibility makes these techniques powerful, but the fundamental key is to express the 
characteristics appropriately.  In this section, the UGV problem will be defined within the framework of an 
optimal control problem; all characteristics will be covered including the kinematic equations, path 
constraints, scaling, and necessary conditions.  Even though the detailed focus remains on one version of an 
UGV, the specific equations are not as important as the validation of the method; due to generality of this 
method any system could be represented. 

3.1 Unmanned Ground Vehicle 
The term “unmanned ground vehicle” is generic; there are a multitude of systems that could fit that name.  In 
an attempt to maintain generality, a common example is used – a four-wheeled car with rear-wheel drive and 
front-wheel steering.  This system is well-studied, and the nonholonomic-nature of the constraints adds 
kinematic complexity.  A simple, kinematic model of the car [8] is shown in Figure 1 and the state and control 
vectors are presented in Equations (1) and (2), respectively.  The x-y location of the car represents the current 
position of the center point of the rear axle.  The car’s orientation angle is measured with respect to the 
horizontal axis and is presented as the state variable theta.  The steering angle, phi, is measured with respect to 
the car’s heading, or velocity vector, and the variable ‘L’ measures the distance between the front and rear 
axles. 
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Figure 1:  A four-wheel car model with front-wheeled steering. 
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The steering angle must be between ±90° for computational and for practical purposes it is typically much less 
than that.  Unlike the Reeds-Shepp or Dubin’s cars the velocity is allowed to change continuously between the 
extremes similarly to the capability of a real car.  

Given this UGV characterization, Equation (3) shows the resulting nonlinear, kinematic equations and 
Equation (4) provides the vehicle’s current turning radius. 
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3.2 Obstacle Representation 
In general, a constraint can be a function of the state, control, or time so long as it is written mathematically.  
For the car problem, there exist vehicle constraints – holonomic kinematics and control constraints – and path 
constraints.  The path constraints are the obstacles around which the car must maneuver.  For simplicity and 
computational efficiency it was desirable to represent the path constraints as continuous, differentiable 
algebraic functions.  With this framework in mind, the p-norm was used to create generic shapes including: 
diamonds, circles and ellipses, and squares and rectangles.  Figure 2 demonstrates how the p-norm can be 
manipulated to create these obstacle shapes; the ellipse and rectangle are simply extensions of the circle and 
square respectively where the distance along the x and y axes are dissimilar.  Equation (5) presents the 
common equation used to build these shapes.  Any point outside the obstacles yields a path constraint value 
greater than zero.  The square and rectangular shapes result from the infinity norm; however, during 
calculations, this is approximated by a large value for the exponent.  Higher values for the exponent yielded 
sharper corners, but they often created numerical concerns.  The square in Figure 2 was created by setting the 
exponent to 100. 

 

Figure 2: Unit p-norms for p = 1, 2, and infinity respectively. 
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Modelling shapes outside of these basic geometries is a powerful option and, in most cases, more realistic of 
the random nature of the world.  However, even simple polygonal shapes are non-trivial since they cannot be 
wholly described by one algebraic equation.  Figure 3 is a straightforward example of a simple shape, 
described by the confluence of three lines, which cannot be characterized by the p-norm. 
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Figure 3: Simple polygonal constructed by three lines. 
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Using the equation for each line it is possible to create a series of inequality constraints that defines each point 
within the obstacle.  This concept is evidenced by Equation Set (6). 
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While every point within the obstacle satisfies all of the three constraints, every point outside the obstacle 
must not satisfy at least one; this is a mathematical ‘or’ condition.  Given that continuous and smooth 
functions are desirable for DIDO implementation, a simple logical operation could not be implemented.  
Instead, the resulting g vector must be searched for the minimum single value; if this value is less than zero, it 
can be stated that the point must lie outside the obstacle.  From a mathematical perspective, every feasible 
point on the map in Figure 3 satisfies Equation (7). 

   ( ) ( )( ) ( ) ( ) ( ){ }1 2 3, min , , 0ih x t y t g x g x g x= <    (7) 

Figure 4 illustrates this concept.  The left panel shows the mathematical constraints of the triangular obstacle 
and right panel shows the resulting values of the new path constraint function over the positional domain.   
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Figure 4: Non-smooth constraint representation of a simple polygonal shape. 

The sharp corners are captured exactly with this technique.  The result is continuous and grows linearly with 
distance from the obstacle; however, the result is not smooth, i.e. non-differentiable. The non-smoothness 
arrives from the fact that the path constraint is essentially the union of three planes.  It is possible to correct 
the non-smoothness, but this comes at a loss of accuracy in rendering the sharp corners.  Equation (8) displays 
the mathematical expression for the smooth polygonal constraint, and it occurs in three distinct steps. 
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In the first step, the elements of g are multiplied by negative one and placed into an exponent.  This maps all 
previously positive values of g to numbers between zero and one and all previously negative values to 
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numbers greater than one.  The next step is to take a p-norm; this step extracts the largest, single value of g.  
The last step uses the natural logarithm to scale the values back to the original range.  In this case a positive 
value for the path constraint indicates a position outside the obstacle, illustrated in Table 1.  Both the power of 
the p-norm and the base of the exponent/logarithm can be altered to provide better smoothness.  Figure 5 
provides a picture of the result; the loss of sharpness around the corners is visible.  Without a precise 
representation of the obstacle’s corners, it is necessary during implementation to add a small buffer around 
obstacles to ensure that the path produced is actually obstruction-free.   

 Table 1: Mapping of vehicle position to path constraint value. 

 Inside Obstacle On Obstacle Outside Obstacle 

g(x) > 0 = 0 < 0 
-g(x) < 0 = 0 > 0 
e-g(x) [0,1] = 1 > 1 

║ e-g(x)║p [0,1] = 1 > 1 
ln﴾║ e-g(x)║p﴿ < 0 = 0 > 0 

 

 

Figure 5: Smoothed constraint representation of a polygonal shape. 

The p-norm and polygonal representations of obstacles can be used interchangeably or simultaneously during 
problem formulation.  While the polygonal representation is more functional, it is slightly more complex to 
prepare. 

3.3 Problem Formulation 
After presenting the kinematic and path constraints, the optimal control problem can be stated mathematically.  
Conceptually, the problem is defined as the generation of a time-optimal trajectory that enables the UGV to 
travel from some initial condition to some final condition while satisfying the kinematic and path constraints.  
Before proceeding, it is important to remember that the optimal control problem is solved with a numerical 
optimization tool and for that reason good scaling is necessary [23].  With this in mind, Equation Set (9) 
shows the new scaled variables that will be used during the problem formulation – the scaling factor for each 
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variable is represented as the capitalized version of that variable letter and the scaled variable is denoted by 
the bar. 
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If the scaling factors for the control variables are set to the maximum respective value, the optimal control 
problem can be represented mathematically as Equation Set 10. 
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In this formulation, the initial condition includes the position and orientation while the endpoint condition 
includes only the position.  If the final orientation of the vehicle is important, it could be included with little 
effort. 

3.4 Optimality Conditions 
Proving that the results of an optimal control problem are indeed globally optimal is intractable, but several 
criteria can be demonstrated to evidence the extremal nature of the solution.  The criteria used within this 
research included satisfaction of the necessary conditions, verification of solution feasibility, and validation of 
Bellman’s principle.  Bellman’s principle was validated by ensuring the concurrence of optimal sub-
trajectories that begin and end on the originally defined solution.  Feasibility is verified by propagating the 
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system kinematics from the initial condition using the calculated optimal control trajectory and MATLAB’s 
Runge-Kutta algorithm.  The necessary conditions for optimality, presented below, were verified, where 
possible, against the solution received from DIDO. 

For the scaled problem introduced in the previous subsection, the control Hamiltonian can be written as 
Equation Set (11). 
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Using the Hamiltonian, the optimal control problem can be reformulated and presented as Equation (12).   
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Equation (13) displays the resulting Lagrangian of the Hamiltonian. 
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After creating the mathematical problem, it is possible to formulate the necessary conditions for optimality. 

The first provision is the Hamiltonian Minimization Condition (HMC) and its affect is shown Equation (14). 
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Complementing this result is the Karush-Kuhn-Tucker (KKT) conditions for the control and path covectors. 
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Given the time optimality of the trajectory, it is expected that Equation (16) be true.   

    0 0v and φµ µ≥ =      (16) 

The first condition corresponds to a maximum vehicle velocity, and the second corresponds to steering angle 
between the extremes.  Using these predictions little can be said for the first equation of the HMC; however, 
the first term in the second equation must be zero to satisfy optimality conditions when non-extremal steering 
values are indicated.  This can only occur if Equation (17) is true when the car is in motion.   

      0θλ =       (17) 

The Adjoint Equation, Equation (18), describes the change of the costates over time. 
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From this equation and the KKT conditions, it can be deduced that xλ  and yλ  will remain constant whenever 
the vehicle is not touching an obstacle.   

The Terminal Transversality Condition (TTC), Equation (19), provides boundary condition information on the 
costates.  In this equation, ( ), ,f fE x tν  is the Endpoint Lagrangian and ( ),f fE x t  is the Endpoint Cost.  
Applying this condition to the car problem yields Equation (20), and it reveals the fact that Equation (17) must 
be true at the final time. 
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 The final two necessary conditions pertain to the value of the Hamiltonian.  The first is the 
Hamiltonian Value Condition (HVC), Equation (21), which is applied in situations, such as this, where the 
final time is not fixed. 
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This result is complemented by the Hamiltonian Evolution Equation (HEE), Equation (22), which describes 
the time-evolution of the Hamiltonian value. 

     0HH H
t

∂
= ⇒ =

∂
     (22) 

Together these two outcomes show that the value of the Hamiltonian must be a constant negative one 
throughout the trajectory. 

In summary, these aforementioned conditions, alongside the feasibility verification and Bellman’s principle 
validation, cannot prove global optimality, but they provide a demonstration of the extremal nature of the 
DIDO generated solution.  In the very least, the existence of a feasible solution alone permits maneuver 
completion, a necessity for the unmanned vehicle application.  

4.0 RESULTS 

The results of this work are presented in two subsections.  First, a basic problem is presented such that the 
optimality conditions can be analyzed.  The more intricate problems that follow include only results.  The 
entire data is not included only for the purposes of brevity.  

4.1 Meeting the Optimality Conditions 
A simple, three-circle problem was evaluated for the purposes of displaying the feasibility and optimality of 
this solution approach.  In the X-Y coordinate frame, the vehicle is intended to travel from the location (0, 0) 
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and oriented down the X-axis to the location (10, 10).  The optimal, vehicle state trajectory, as created in 
DIDO, is shown in Figure 6 and Figure 7.  There is a noticeable distance between the vehicle trajectory and 
the side of the obstacle; the reason for this separation is in accounting for the size of the UGV. 

 

Figure 6: Time-optimal UGV trajectory through three circular obstacles. 
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Figure 7: UGV orientation during time-optimal trajectory. 
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The UGV trajectory is straight unless it is maneuvering to avoid an obstacle, thus displaying the optimal 
nature of the result.  The optimal control trajectory that generated this state path is shown in Figure 8.  Using 
this control trajectory to test the feasibility of the solution, Figure 9 shows the comparison of the propagated 
and DIDO-generated states.  The propagated and DIDO-generated states are identical; this indicates solution 
feasibility. 
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Figure 8: UGV time-optimal, control trajectory.  
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Figure 9: Feasibility verification of time optimal control trajectory. 
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The next several figures present elements of the necessary conditions.  Figure 10 displays the value of the 
Hamiltonian throughout the trajectory; this result verifies Equation (21) and Equation (22).  Figure 11 displays 
the confirmation of Equation (14), the Hamiltonian Minimization Condition, where the partial derivative of 
the Hamiltonian with respect to each control variable should be equal to zero.  The results display some 
numerical error, but this is minimal and does not distract from the feasibility of the solution. 
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Figure 10: Evolution of Hamiltonian value during time-optimal trajectory. 
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Figure 11: Verification of Hamiltonian Minimization Condition. 

Figure 12 presents the costates and shows that Equation (17) is true, i.e. λθ equals zero.  Figure 13 shows the 
path constraint covectors, and in accordance with the KKT conditions, the covectors are only active while the 
vehicle is touching a path constraint.  Analyzing Figure 13 alongside Figure 12, it is apparent that Equation 
(18) is proven; namely, λx and λy are constant unless the vehicle is touching an obstacle. 
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Figure 12: Costate values during time-optimal trajectory. 

0 20 40 60-10

-8

-6

-4

-2

0

Time (sec)

 
µh1 µh2 µh3

 

Figure 13: Path constraint covector values during time-optimal trajectory. 

The last necessary condition is the KKT condition associated with the control variables.  The maximum 
velocity is used throughout the trajectory and for that reason it maintains a positive value.  Similarly, a non-
maximum value of the steering angle is used and it maintains a value of zero. 
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Figure 14: Control constraint covector values during time-optimal trajectory. 

The remaining condition of optimality is Bellman’s principle.  In this experiment, Bellman’s principle is 
validated by comparing three optimal sub-trajectories to the original optimal solution.  These sub-trajectories 
begin along the original trajectory at the one-third, one-half, and two-thirds distance locations as shown in 
Figure 15.  Figure 15 illustrates the fact that all three sub-trajectories are coincident with the original time-
optimal trajectory and Figure 16 illustrates the fact that the maneuver cost is consistent across each trajectory.  
This provides further evidence to the extremal nature of the DIDO-generated solution. 

In summary, the results shown above display the agreement of the DIDO generated solution with the 
conditions of optimality.  The global optimality of the solution is not guaranteed; however the solution is 
proven feasible and the extremal nature is verified. 

 

Figure 15: Validation of solution optimality with Bellman’s principle. 
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Figure 16: Validation of optimal cost with Bellman’s principle. 

4.2 Extended Applications 
Having shown the validity of this solution approach, this subsection focuses on the illustration of its 
practicality and applicability by implementing this approach with various problems. 

4.21 Various Obstacle Shapes 

Section 3.2 introduced the concepts used to mathematically represent the various obstacle shapes that can be 
incorporated into the optimal control problem.  Those concepts are incorporated below to evidence their 
applicability.  Figure 17 shows a time-optimal trajectory generated against a multi-shape obstacle 
environment, including squares, diamonds, rectangles, circles, and ellipses.  The result displays similar 
characteristics to the three-circle problem; specifically, the vehicle travels in straight lines except under the 
situation of touching an obstacle.   

 

Figure 17: Time-optimal trajectory versus multi-shape obstacle environment. 
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Figure 18 illustrates the capability of this technique against a polygonal obstacle shape.  In this particular 
instance, a random, five-sided obstacle is incorporated.   

 

Figure 18: Time-optimal trajectory versus polygonal shape obstacle. 

4.22 Obstacle Rich Environment 

In the previous examples, the usefulness of optimal control techniques versus various obstacle shapes was 
evidenced, but relatively few obstacles were incorporated into each environment.  Figure 19 evidences 
optimal control techniques against a 32-obstacle environment with circular obstacles. 

 

 

Figure 19: Time-optimal trajectory versus obstacle rich environment. 
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4.24 Control Failure 

The previous examples show that optimal control techniques are successful in various, complex environments, 
but the problem in this subsection tests the ability to find a solution in the event of UGV damage.  Figure 24 
shows the optimal control trajectory when the vehicle must turn left, i.e. the minimum and maximum steering 
angle values are positive.  In this situation, the solution is not initially intuitive or well understood.  The time-
optimal result requires two types of motion.  The first type combines forward motion of the vehicle with a 
minimum steering angle; this results in a maximum turning radius.  The second type of motion combines the 
backward motion of the vehicle with a maximum steering angle; this results in a minimum turning radius.  In 
total, the UGV moves forward with a minimum turning radius and then backward with the maximum turning 
radius to align for the next forward motion.  This type of motion is used in a repetitive fashion in Figure 24 to 
successfully navigate the obstacles. 

 

 

Figure 24: Time-optimal maneuver where the vehicle suffers a control failure. 

4.25 Dynamic Environments 

Many real-world problems involve dynamic environments, where either the destination or obstacles are 
moving, and examples of this would be typical highway travel and a vehicle interceptor mission, respectively.  
These problems require significant knowledge about the obstacles and targets in their environment, but with 
good sensors and positional knowledge, these assumptions are not unrealistic.  For example, in the case of an 
aircraft carrier landing, the airplane could easily know accurate locations of itself and the target.  Figure 25 
shows the problem of a moving destination or target with two circular obstacles along the path.  The results 
are displayed as an image generated from a strobe light so that the entire maneuver is visible within one 
frame.  Throughout the trajectory, the vehicle does not drive towards the instantaneous location of the target; 
it drives towards the final location of the target.  This allows the trajectory to be optimal.   

The second experiment involves two, circular obstacles moving at different speeds and a stationary 
destination.  Figure 26 displays these results.  In this situation, a strobe image is confusing; therefore, the 
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results are displayed as movie frame scenes.  From Figure 26 it is visible that the vehicle reaches the 
destination without hitting the obstacles; however, the vehicle’s trajectory is within close proximity of the 
obstacles, a visual indication of optimality. 

 

 

Figure 25: Time-optimal maneuver toward a moving target (strobe image). 

 

 

Figure 26: Scenes from a time-optimal maneuver around moving obstacles. 
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